Math 2550 - Homework # 9 Matrices of Linear Transformations

1. Let
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 where $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ -2x+4y \end{pmatrix}$.
Let $\beta = \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right]$

One can show that β is a basis for \mathbb{R}^2 . You don't have to check it.

- (a) Show that T is a linear transformation.
- (b) Find $[T]_{\beta}$.

(c) Verify that
$$[T]_{\beta}[\vec{v}]_{\beta} = [T(\vec{v})]_{\beta}$$
 for $\vec{v} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$

- (d) Verify that $[T]_{\beta}[\vec{v}]_{\beta} = [T(\vec{v})]_{\beta}$ for $\vec{v} = \begin{pmatrix} 2\\ 1 \end{pmatrix}$
- 2. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ where $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x y \\ x + y \end{pmatrix}$. Let $\beta = \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right]$

One can show that β is a basis for \mathbb{R}^2 . You don't have to check it.

- (a) Show that T is a linear transformation.
- (b) Find $[T]_{\beta}$.
- (c) Verify that $[T]_{\beta}[\vec{v}]_{\beta} = [T(\vec{v})]_{\beta}$ for $\vec{v} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$
- (d) Verify that $[T]_{\beta}[\vec{v}]_{\beta} = [T(\vec{v})]_{\beta}$ for $\vec{v} = \begin{pmatrix} 0\\1 \end{pmatrix}$

3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ where

$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}4 & 0 & 1\\2 & 3 & 2\\1 & 0 & 4\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}4x+z\\2x+3y+2z\\x+4z\end{pmatrix}$$

In the previous HW you showed $\lambda = 3$ is an eigenvalue of T with eigenvectors $\vec{a} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and that $\lambda = 5$ is an eigenvalue of T with eigenvector $\vec{c} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$. Let $\beta = [\vec{a}, \vec{b}, \vec{c}]$. One can show that the vectors in β are linearly independent and hence are a basis for \mathbb{R}^3 .

- (a) Find $[T]_{\beta}$
- (b) Verify that $[T(\vec{v})]_{\beta} = [T]_{\beta}[\vec{v}]_{\beta}$ using $\vec{v} = \begin{pmatrix} 0\\3\\2 \end{pmatrix}$

[Hint: $\vec{v} = 1 \cdot \vec{a} + 1 \cdot \vec{b} + 1 \cdot \vec{c}$]